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Letters
Synthesis of new polyoxapolycarboxylic ligands for lanthanide(III)
ions complexation
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Abstract—The multidentate polyoxapolycarboxylic ligands 1 and 2 were obtained by a two-step synthesis from easily available
chemicals. Preliminary data on their coordination properties are reported.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1.
In the last decade great efforts have been devoted to the
development of new multidentate ligands for transition
metal and lanthanide ions. The purpose was to obtain
complexes whose stability, physical properties and bio-
distribution would make them suitable as contrast
agents for MRI (magnetic resonance imaging),1 or as
diagnostic–therapeutic radiopharmaceuticals2 or as
markers in fluorescence bioassays.3 Most of these
ligands were based on polyaminopolycarboxylic acids
such as DTPA (diethylenetriaminopentaacetic acid),
DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-
acetic acid) and many of their substituted or modified
derivatives.4 Recently interest has focused on polyoxa-
polycarboxylic ligands, mainly in consideration of their
easy synthetic accessibility.5 Most of them derive from
the carboxyalkylation of diols or triols, generating tetra-
dentate or hexadentate ligands.6 However, the com-
plexation of lanthanide ions for medical applications
requires a higher ligand denticity to achieve a sufficient
thermodynamic stability.4

In this paper we report the synthesis of two new poly-
oxapolycarboxylic ligands (1 and 2, Fig. 1), containing
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10 and 9 oxygen donor atoms, respectively. A pre-
liminary assessment of the complexing ability of 1
towards lanthanide(III) ions is reported, in view of the
potential diagnostic use of the corresponding paramag-
netic complexes as contrast agents for magnetic reso-
nance imaging (MRI).

The synthesis of a high-denticity polyoxapolycarboxylic
ligand was achieved by carboxylalkylation of the proper
polyol substrate. The polyol chosen for this task was
2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol 3, readily
obtained in high yield by the base-catalyzed tandem
cross-condensation–Cannizzaro dismutation of cyclo-
hexanone with excess formaldehyde.7 The choice of
pentol 3 relied on the number of OH groups prone
to functionalization (five, to yield a total of 10
donor groups after derivatization) and their conforma-
tional arrangement, potentially favourable to metal
chelation.
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Following a protocol employed for hydrophilic polyols,6

pentol 3 was subjected at room temperature to phase-
transfer-catalyzed alkylation with t-butyl bromoacetate
in a biphasic system composed of 50% aqueous NaOH
and toluene, with tetra n-butylammonium hydrogen
sulfate as PTC catalyst (Scheme 1).

The functionalization of pentol 3 afforded a mixture of
two products easily separated by silica gel column
chromatography and identified by NMR and ESI-MS as
the pentaalkylated pentol 4 and the symmetrically tetra-
alkylated pentol 5.8 The reaction was repeated in a range
of experimental conditions, mainly varying the reaction
time and the ratios alkylating agent/polyol/catalyst. As
expected, an excess of t-butyl bromoacetate tended to
favour the formation of 4 instead of 5, although com-
plete conversion of 5 to 4 was never observed. Even after
longer contact times complete pentaalkylation was pre-
vented by the formation of large amounts of apolar
byproducts from the self-condensation of t-butyl bro-
moacetate. Higher catalyst/3 ratios sped up the reaction
hardly affecting the ratio 4/5. Attempts to direct the
reaction towards exclusive formation of 5 by lowering
the t-butyl bromoacetate/3 or catalyst/3 ratios, reducing
the reaction time or operating at lower temperatures
always yielded complex mixtures of alkylation products.
Slow addition of t-butyl bromoacetate was found to
have a beneficial effect on the overall yield, reducing the
formation of the apolar byproducts and giving average
yields of 52% and 31% for pentaester 4 and tetraester 5,
respectively.

Although the higher denticity of 4 appeared more
promising for the purpose of metal chelation, compound
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5 could be seen as an octadentate ligand (denticity still
adequate for stable chelation of lanthanides) possessing
an extra OH group suitable for further functionaliza-
tion, particularly for conjugation to biomolecules.

Deprotection of t-butyl esters 4 and 5 was accomplished
by stirring overnight in neat TFA, to afford nearly
quantitative yields of 1 and 2, respectively.9

Next, we assessed the properties of the complexes of the
ligands with Gd3þ, the paramagnetic ion of choice in the
design of contrast agents for MRI. The complexes were
prepared by adding a stoichiometric amount of GdCl3
to a solution of the corresponding ligand while main-
taining the pH at 7.0 by the addition of aq NaOH. The
longitudinal relaxivity R1p (defined as the increase of
the longitudinal relaxation rate of water protons in the
presence of 1.0mmol/L of the paramagnetic species) of
[Gd(1)]2� was found to be 11.4mM�1 s�1 in the freshly
prepared solution. This value is strongly indicative of a
pentacoordinated metal ion with a high hydration
number (q). Further support to this suggestion was
gained by measuring the variation of the transverse
relaxation rate of water 17O nuclei as a function of
temperature. The fitting of data reported in Figure 2
yielded a value of 3 for q and a mean half-time of 87 ns
for the residence of coordinated water molecules. These
data were used for fitting the data obtained from the
NMRD profile (proton longitudinal relaxivity plotted as
a function of the Larmor frequency, Fig. 2), giving a
rotational correlation time for the complex of 106 ps at
ambient temperature.

Competitive titration of [Gd(1)]2� with several well-
known ligands was carried out to make a preliminary
assessment of its stability. As might be predicted
for a five-coordinated chelate, competition with DTPA
(LogK½GdðDTPAÞ� ¼ 22:46), CDTA (LogK½GdðCDTAÞ� ¼
19:47), EDTA (LogK½GdðEDTAÞ� ¼ 17:35) or HEDTA
(LogK½GdðHEDTAÞ� ¼ 14:80) resulted in nearly complete
transmetalation, indicative of a lower stability.

[Gd(2)]� showed a longitudinal relaxivity R1p of
15.0mM�1 s�1, suggestive of a higher hydration of the
lanthanide ion in view of the decreased ligand denticity.
The overall lanthanide-ion binding of 1 and 2 very likely
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reflects the overwhelming predominance of carboxylate
oxygen donors in the putative O10- and O9-donor sets,
respectively.

Extension of the work to other metal ions with 1 and 2
will be pursued. These molecules have not been opti-
mized but manipulation of their structural framework
aiming at enhancing denticity and reducing conforma-
tional mobility of the donor arms would eventually lead
to ligands with improved stability.
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